杨辉三角的规律公式c语言(杨辉三角的规律)
大家好,我是小前,我来为大家解答以上问题。杨辉三角的规律公式c语言,杨辉三角的规律很多人还不知道,现在让我们一起来看看吧!
1、杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律。
2、2
3、历史
4、 北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算。
5、 杨辉,字谦光,南宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪前半贾宪的《释锁算术》,并绘画了“古法七乘方图”。故此,杨辉三角又被称为“贾宪三角”。
6、 元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。
7、 意大利人称之为“塔塔利亚三角形”(Triangolo
8、di
9、Tartaglia)以纪念在16世纪发现一元三次方程解的塔塔利亚。
10、 在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。
11、 布莱士·帕斯卡的著作Traité
12、du
13、triangle
14、arithmétique(1655年)介绍了这个三角形。帕斯卡搜集了几个关于它的结果,并以此解决一些概率论上的问题,影响面广泛,Pierre
15、Raymond
16、de
17、Montmort(1708年)和亚伯拉罕·棣·美弗(1730年)都用帕斯卡来称呼这个三角形。
18、 近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese
19、triangle)
20、 历史上曾经独立绘制过这种图表的数学家
21、 ·贾宪
22、中国北宋
23、11世纪
24、《释锁算术》
25、 ·杨辉
26、中国南宋1261《详解九章算法》记载之功
27、 ·朱世杰中国元代
28、1299《四元玉鉴》级数求和公式
29、 ·阿尔·卡西
30、阿拉伯
31、1427《算术的钥匙》
32、 ·阿皮亚纳斯德国
33、1527
34、 ·米歇尔`斯蒂费尔德国
35、1544《综合算术》二项式展开式系数
36、 ·薛贝尔
37、法国
38、1545
39、 ·B·帕斯卡
40、法国
41、1654《论算术三角形》
42、 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。
43、3
44、应用
45、 性质6和性质7是杨辉三角的基本性质,是研究杨辉三角其他规律的基础。
46、 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。
47、 例如,在杨辉三角中,第3行的第三个数恰好对应着两数和的平方的展开式的每一项的系数,
48、 即(a+b)^2;=a^2+2ab+b^2
49、 第4行的四个数恰好依次对应两数和的立方的展开式的每一项的系数
50、 即(a+b)^3=a^3+3a^2b+3ab^2+b^3
51、 以此类推。
52、 又因为性质6:第n行的m个数可表示为C(n,m-1),即为从n个不同元素中取m-1个元素的组合数。因此可得出二项式定理的公式为:(a+b)^n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n
53、 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。
54、我希望对你有用
本文到此讲解完毕了,希望对大家有帮助。