区间估计公式(区间估计)
大家好,我是小前,我来为大家解答以上问题。区间估计公式,区间估计很多人还不知道,现在让我们一起来看看吧!
1、点估计(point estimation)是用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。点估计和区间估计属于总体参数估计问题。
2、区间估计(interval estimate)是在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。与点估计不同,进行区间估计时,根据样本统计量的抽样分布可以对样本统计量与总体参数的接近程度给出一个概率度量。
3、由样本数据估计总体分布所含未知参数的真值,所得到的值,称为估计值。点估计的精确程度用置信区间表示。
4、区间估计,是参数估计的一种形式。1934年,由统计学家J.奈曼所创立的一种严格的区间估计理论。置信系数是这个理论中最为基本的概念。通过从总体中抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计。
5、扩展资料:
6、点估计的估计法
7、(1)最大似然估计法
8、设样本X=(X1,X2,…,Xn)的分布密度为L(X,θ),若固定X而将L视为θ的函数,则称为似然函数,当X是简单随机样本时,它等于ƒ(X1,θ)ƒ(X2,θ)…ƒ(Xn,θ),其中,ƒ(X,θ)是总体分布的密度函数或概率函数(见概率分布)。
9、 中的参数μ和
10、 而提出的估计量和2,就是μ和
11、 的最大似然估计。
12、(2)最小二乘估计法
13、这个重要的估计方法是由德国数学家C.F.高斯在1799~1809年和法国数学家A.-M.勒让德在1806年提出,并由俄国数学家Α.Α.马尔可夫在1900年加以发展。它主要用于线性统计模型中的参数估计问题。贝叶斯估计法是基于“贝叶斯学派”的观点而提出的估计法(见贝叶斯统计)。
14、区间估计的置信区间
15、对所考虑的置信区间(或上、下限)加上某种一般性限制,在这个前提下寻找最优者。无偏性是经常用的限制之一,如果一个置信区间(上、下限)包含真值θ的概总不小于包含任何假值θ┡的概率,则称该置信区间(上、下限)是无偏的。同变性(见统计决策理论)也是一个常用的限制。
16、参考资料来源:搜狗百科 区间估计
17、参考资料来源:搜狗百科 点估计
本文到此讲解完毕了,希望对大家有帮助。