您的位置:首页 >信息互动 >   正文

指数是log怎么算(log怎么算)

导读 大家好,我是小前,我来为大家解答以上问题。指数是log怎么算,log怎么算很多人还不知道,现在让我们一起来看看吧!1、a^(log(a)(b))=b 2...

大家好,我是小前,我来为大家解答以上问题。指数是log怎么算,log怎么算很多人还不知道,现在让我们一起来看看吧!

1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nlog(a)(M) 推导 因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

2、 2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 4、与(2)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x)e称作自然对数的底] log(a^n)(b^m)=ln(a^n)÷ln(b^n) 由基本性质4可得 log(a^n)(b^m) = [n×ln(a)]÷[m×ln(b)] = (m÷n)×{[ln(a)]÷[ln(b)]} 再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)。

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!